※現在、ブログ記事を移行中のため一部表示が崩れる場合がございます。
順次修正対応にあたっておりますので何卒ご了承いただけますよう、お願い致します。

Chainer:粗い手書き数字データの読み込み


2017年 02月 09日

手書きデータ読み込み方法の説明は前々回に行い、画像データをmatplotpyで表示してみせた。

今回は、読み込んで、Irisのときと同様に、画像のデータをX、教師データをYに読み込む。
前回は、出力が3つだったが、今回は数字の0〜9までで10個に変わるのを考えて、以下のように書き換えた。
 
# digitsデータの読み込み
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data.astype(np.float32)
Y = digits.target.astype(np.int)
N = Y.size
Y2 = np.zeros(10 * N).reshape(N,10).astype(np.float32)
for i in range(N):
Y2[i,Y[i]] = 1.0
このデータを学習データとテストデータに分割する訳だが、データ数が150から1797に増加したので、2/3を学習データに、1/3をテストデータにしてみた。

# 学習データ(xtrain,ytrain)とテストデータ(xtest,yans)に分ける
index  = np.arange(N)
xtrain = X[index[index % 3 != 0],:]
ytrain = Y2[index[index % 3 != 0],:]
xtest  = X[index[index % 3 == 0],:]
yans   = Y[index[index % 3 == 0]]
次に、一番肝心なモデルについて変更する。
Irisのときのモデルのノード構成は、4-6-3 となっていた。中間層が6ノードである。

digitsのとき、入力ノードは8×8の画像なので、64になる。
出力ノードは、0〜9の各値に対してノードがあるので、10になる。
中間層のノードであるが、64と10から適当な値を考えるべきである。
しかし、ここではとりあえず、64の半分の32を与えてみる。

中間層のノード数が変わっても、プログラム中で変更するのは、たった2個所である。
中間層のノード数に名前を付けてしまえば、一箇所にすることも可能だ。

# Define model
class DigitsChain(Chain):
def __init__(self):
super(DigitsChain, self).__init__(
l1=L.Linear(64,32),		# 1-2層
l2=L.Linear(32,10),		# 2-3層
)

def __call__(self,x,y):
return F.mean_squared_error(self.fwd(x), y)

def fwd(self,x):
h1 = F.sigmoid(self.l1(x))
h2 = self.l2(h1)
return h2
これでほぼ準備は出来たはずなので、走らせるのは次回にしよう。